
quma Documentation
Release 0.1.0

ebene fünf GmbH

Aug 18, 2020

Navigation

1 Motivation 3

2 Learn more 5

3 License 7

4 Installation 9
4.1 Prerequisites . 9
4.2 Installing quma . 9
4.3 Templates for dynamic SQL . 10
4.4 Development . 10

5 How to use quma 11
5.1 Opening a connection . 12
5.2 Creating a cursor . 12
5.3 Running queries . 12
5.4 Committing changes and rollback . 13
5.5 Executing literal statements . 14
5.6 Accessing the DBAPI cursor and connection . 14

6 The Query class 15
6.1 Getting multiple rows from a query . 15
6.2 Getting a single row . 15
6.3 Execute only . 16
6.4 Getting data in chunks . 17
6.5 A simpler version of many() . 18
6.6 Getting the number of rows . 18
6.7 Checking if a result exists . 18
6.8 Ad hoc queries . 18
6.9 Prepared statements . 19
6.10 Results are cached . 19
6.11 Accessing the underlying cursor . 19
6.12 Overview . 20

7 Connecting 21
7.1 Connection Examples . 21
7.2 The Database class . 22

i

8 Connection pool 25

9 Reusing connections 27

10 Changling cursor 29
10.1 Shadowed superclass members . 29
10.2 Performance . 30
10.3 MySQL/MariaDB . 30

11 Passing Parameters to SQL Queries 31

12 Dynamic SQL using Templates 33
12.1 Beware of SQL injections! . 33
12.2 The problem with the % . 34
12.3 Template files lookup . 34

13 Shadowing 35

14 Custom namespaces 37
14.1 Root members . 38
14.2 Aliasing . 38

15 Importable database 39

16 Testing 41
16.1 Prerequisites . 41
16.2 How to run the tests . 41
16.3 Overwrite credentials . 41

Index 43

ii

quma Documentation, Release 0.1.0

quma is a small SQL database library for Python and PyPy version 3.5 and higher. It maps object methods to SQL
script files and supports SQLite, PostgreSQL, MySQL and MariaDB.

Unlike ORMs, it allows to write SQL as it was intended and to use all features the DBMS provides. As it uses plain
SQL files you can fully utilize your database editor or IDE tool to author your queries.

It also provides a simple connection pool and templating for dynamic SQL like conditional WHEREs.

Navigation 1

quma Documentation, Release 0.1.0

2 Navigation

CHAPTER 1

Motivation

Unlike ORMs, it allows to write SQL as it was intended and to use all features the DBMS provides. As it uses plain
SQL files you can fully utilize your database editor or IDE to author your queries.

If you know how to best design your DDL and already have a SELECT in your mind when data needs to be retrieved,
welcome, this is for you.

It gives you back your powers you so carelessly gave away to ORMs.

3

quma Documentation, Release 0.1.0

4 Chapter 1. Motivation

CHAPTER 2

Learn more

• If you want to know how to install quma and its dependencies, see Installation.

• To get started read How to use quma from start to finish.

• To see what you can do with query objects read The Query class.

• In Connecting you learn how to connect to SQLite, PostgreSQL and MySQL/MariaDB databases.

• Connection pool.

• Learn what a changling cursor is and how it enables you to access result data in three different ways.

• Database management systems have different ways of parameter binding. Passing parameters shows how it
works in quma.

• SQL doesn’t support every kind of dynamic queries. If you reach its limits you can circumvent this by using
Templates.

• If you pass more than one directory to the constructor, quma shadows duplicate files. See how this works in
Shadowing.

• You can add custom methods to namespaces. Learn how to do it in Custom namespaces. You will also learn
about aliasing.

• If you like to work on quma itself, Testing has the information on how to run its tests.

5

quma Documentation, Release 0.1.0

6 Chapter 2. Learn more

CHAPTER 3

License

quma is released under the MIT license.

Copyright © 2018-2020 ebene fünf GmbH. All rights reserved.

7

quma Documentation, Release 0.1.0

8 Chapter 3. License

CHAPTER 4

Installation

4.1 Prerequisites

You may need to install the Python and database library develompment headers.

On Debian/Ubuntu derivates for example like this:

PostgreSQL
sudo apt install python3-dev libpq-dev
MySQL/MariaDB
sudo apt install python3-dev default-libmysqlclient-dev

4.2 Installing quma

If you like to use quma with SQLite Python has everything covered and you only need to install quma itself:

pip install quma

To connect to a PostgreSQL or MySQL/MariaDB database you need to install the matching driver:

PostgreSQL
pip install quma psycopg2
or
pip install quma psycopg2cffi

MySQL/MariaDB
pip install quma mysqlclient

9

quma Documentation, Release 0.1.0

4.3 Templates for dynamic SQL

You need to install the Mako template library if you want to use dynamic sql scripts using templates.

pip install mako

4.4 Development

git clone https://github.com/ebenefuenf/quma
cd quma
pip install -e '.[test,docs,templates,postgres,mysql]'

10 Chapter 4. Installation

http://www.makotemplates.org

CHAPTER 5

How to use quma

quma reads sql files from the file system and makes them accessible as script objects. It passes the content of the files
to a connected database management system (DBMS) when these objects are called.

Throughout this document we assume a directory with the following structure:

Scripts Content

path/to/sql/scripts
users

all.sql SELECT * FROM users
by_city.sql SELECT * FROM users WHERE city = :city
by_id.sql SELECT * FROM users WHERE id = :id
remove.sql DELETE FROM users WHERE id = :id
rename.sql UPDATE TABLE users

SET name = :name WHERE id = :id
get_admin.sql SELECT * FROM users WHERE admin = 1

After initialization you can run these scripts by calling members of a Database or a Cursor instance. Using the
example above the following members are available:

'cur' is a cursor instance
cur.users.all(...
cur.users.by_city(...
cur.users.by_id(...
cur.users.rename(...
cur.users.remove(...
cur.get_admin(...

Read on to see how this works.

11

quma Documentation, Release 0.1.0

5.1 Opening a connection

To connect to a DBMS you need to instantiate an object of the Database class and provide a connection string and
either a single path or a list of paths to your SQL scripts.

from quma import Database
db = Database('sqlite:///:memory:', '/path/to/sql-scripts')

Note: Database instances are threadsafe.

For more connection examples (e. g. PostgreSQL or MySQL/MariaDB) and parameters see Connecting. quma also
supports connection pooling.

From now on we assume an established connection in the examples.

5.2 Creating a cursor

DBAPI libs like psycopg2 or sqlite3 have the notion of a cursor, which is used to manage the context of a fetch
operation. quma is similar in that way. To execute queries you need to create a cursor instance.

quma provides two ways to create a cursor object. Either by using a context manager:

with db.cursor as cur:
...

Or by calling the cursor method of the Database instance:

try:
cur = db.cursor()

finally:
cur.close()

5.3 Running queries

To run the query in a sql script from the path(s) you passed to the Database constructor you call members of the
Database instance or the cursor (db and cur from now on).

Scripts and directories at the root of the path are translated to direct members of db or cur. After initialisation of
our example dir above, the script /get_admin.sql is available as Script instance db.get_admin or cur.
get_admin and the directory /users as instance of Namespace, i. e. db.users or cur.users. Scripts in
subfolders will create script objects as members of the corresponding namespace: /users/allwill be db.users.
all or cur.users.all.

When you call a Script object, as in cur.user.all() where all is the mentioned object, you get back a
Query instance. The simplest use is to iterate over it (see below for more information about the Query class):

with db.cursor as cur:
all_users = cur.users.all()
for user in all_users:

print(user['name'])

The same using the db API:

12 Chapter 5. How to use quma

quma Documentation, Release 0.1.0

with db.cursor as cur:
all_users = db.users.all(cur)

To learn what you can do with Query objects see The Query class.

Note: As you can see cur provides a nicer API where you don’t have to pass the cursor when you call a script or a
method. Then again the db API has the advantage of being around 30% faster. But this should only be noticeable if
you run hundreds or thousands of queries in a row for example in a loop.

If you have cloned the quma repository from github you can see the difference when you run the script bin/
cursor_vs_db.py.

5.4 Committing changes and rollback

quma does not automatically commit by default. You have to manually commit all changes as well as rolling back if
an error occurs using the commit() and rollback() methods of the cursor.

try:
cur.users.remove(id=13).run()
cur.users.rename(id=14, name='New Name').run()
cur.commit()

except Exception:
cur.rollback()

If db is initialized with the flag contextcommit set to True and a context manager is used, quma will automatically
commit when the context manager ends. So you don’t need to call cur.commit().

db = Database('sqlite:///:memory:', contextcommit=True)

with db.cursor as cur:
cur.users.remove(id=13).run()
cur.users.rename(id=14, name='New Name').run()
no need to call cur.commit()

Note: If you are using MySQL or SQLite some statements will automatically cause a commit. See the MySQL docs
and SQLite docs

5.4.1 Autocommit

If you pass autocommit=True when you initialize a cursor, each query will be executed in its own transaction that
is implicitly committed.

with db(autocommit=True).cursor as cur:
cur.users.remove(id=13).run()

try:
cur = db.cursor(autocommit=True)
cur.users.remove(id=13).run()

finally:
cur.close()

5.4. Committing changes and rollback 13

https://github.com/ebenefuenf/quma
http://https://dev.mysql.com/doc/refman/8.0/en/implicit-commit.html
https://docs.python.org/3/library/sqlite3.html#controlling-transactions

quma Documentation, Release 0.1.0

5.5 Executing literal statements

Database instances provide the method execute(). You can pass arbitrary sql strings. Each call will be automat-
ically committed. If there is a result it will be returned otherwise it returns None.

db.execute('CREATE TABLE users ...')
users = db.execute('SELECT * FROM users')
for user in users:

print(user.name)

If you want to execute statements in the context of a transaction use the execute() method of the cursor:

with db.cursor as cur:
cur.execute('DELETE FROM users WHERE id = 13');
cur.commit()

5.6 Accessing the DBAPI cursor and connection

The underlying DBAPI connection and cursor objects are available as members of the cursor instance. The connection
object as raw_conn and the cursor as raw_cursor.cursor.

The connection
cur.raw_conn.autocommit = True
dbapi_cursor = cur.raw_conn.cursor()

The cursor
cur.raw_cursor.cursor.execute('SELECT * FROM users;')
users = cur.raw_cursor.cursor.fetchall()
raw_cursor wraps the real cursor. This would work as well
cur.raw_cursor.execute('SELECT * FROM users;')
users = cur.raw_cursor.fetchall()

All members of the raw_cursor.cursor object are also available as members of cur. Hence there should be no
need to use it directly:

cur.execute('SELECT * FROM users;')
users = cur.fetchall()

14 Chapter 5. How to use quma

CHAPTER 6

The Query class

When you call a script object it returns an instance of the Query class which holds the code from the script file and
the parameters passed to the script call.

Queries are executed lazily. This means you have to either call a method of the query object or iterate over it to cause
the execution of the query against the DBMS.

6.1 Getting multiple rows from a query

You can either iterate directly over the query object or call its all() method to get a list of all the rows.

with db.cursor as cur:
result = cur.users.by_city(city='City 1')
for row in result:

print(row.name)

calling the .all() method to get a materialized list/tuple
user_list = cur.users.by_city(city='City 1').all()
is a bit faster than
user_list = list(cur.users.by_city(city='City 1'))

When calling all() MySQL and MariaDB will return a tuple, PostgreSQL and SQLite will return a list.

Note: If you are using PyPy with the sqlite3 driver the cast using the list() function does not currently work and
will always result in an empty list.

6.2 Getting a single row

If you know there will be only one row in the result of a query you can use the one() method to get it. quma will
raise a DoesNotExistError error if there is no row in the result and a MultipleRowsError if there is more

15

quma Documentation, Release 0.1.0

than one row.

from quma import (
DoesNotExistError,
MultipleRowsError,

)
...

with db.cursor as cur:
try:

user = cur.users.by_id(id=13).one()
except DoesNotExistError:

print('The user does not exist')
except MultipleRowsError:

print('There are multiple users with the same id')

DoesNotExistError and MultipleRowsError are also attached to the Database class so you can access it
from the db instance. For example:

with db.cursor as cur:
try:

user = cur.users.by_id(id=13).one()
except db.DoesNotExistError:

print('The user does not exist')
except db.MultipleRowsError:

print('There are multiple users with the same id')

It is also possible to get a single row by accessing its index on the result set:

user = cur.users.by_id(id=13)[0]
or
users = cur.users.by_id(id=13)
user = users[0]

If you want the first row of a result set which may have more than one row or none at all you can use the first()
method:

"user" will be None if there are no rows in the result.
user = cur.users.all().first()

The method value() invokes the one() method, and upon success returns the value of the first column of the row
(i. e. fetchall()[0][0]). This comes in handy if you are using a RETURNING clause, for example, or return
the last inserted id after an insert.

last_inserted_id = cur.users.insert().value()

6.3 Execute only

To simply execute a query without needing its result you call the run() method:

with db.cursor as cur:
cur.user.add(name='User',

email='user@example.com',
city='City').run()

(continues on next page)

16 Chapter 6. The Query class

quma Documentation, Release 0.1.0

(continued from previous page)

or
query = cur.user.add(name='User',

email='user@example.com',
city='City')

query.run()

This is handy if you only want to execute the query, e. g. DML statements like INSERT, UPDATE or DELETE where
you don’t need a fetch call.

6.4 Getting data in chunks

quma supports the fetchmany method of Python’s DBAPI by providing the many() method of Query. many()
returns an instance of ManyResult which implements the get() method which internally calls the fetchmany
method of the underlying cursor.

many_users = cur.users.by_city(city='City').many()
first_two = manyusers.get(2) # the first call of get executes the query
next_three = manyusers.get(3)
next_two = manyusers.get(2)

Another example:

def users_generator()
with db.cursor as cur:

many_users = cur.users.all().many()
batch = many_users.get(3) # the first call of get executes the query
while batch:

for result in batch:
yield result

batch = many_users.get(3)

for user in users_generator():
print(user.name)

Note: In contrast to all other fetching methods of the query object, like all(), first(), or one(), a call of
many() will not execute the query. Instead, the first call of the get() method of a many result object will cause the
execution. Also, results of many calls are not cached and if a query was already executed the many mechanism will
execute it again anyway. So keep in mind that already executed queries will be re-executed when many() is called
after the first execution, as in:

all_users = cur.users.all()
first_user = allusers.first() # query executed the first time
many_users = allusers.many()
first_two = manyusers.get(2) # query executed a second time

Additionally, the cache of all_users from the last example will be invalidated after the first call of get(). So you
should avoid to mix many queries with “normal” queries.

6.4. Getting data in chunks 17

quma Documentation, Release 0.1.0

6.5 A simpler version of many()

If your expected result set is too large for simply iterating over the query object or calling all() (as they call
fetchall internally) but you like to work with the result in a single simple loop instead of using many(), you can
use the method unbunch(). It is a convenience method which internally calls fetchmany with the given size.
Using unbunch() we can simplify the many() example with the users_generator from the last section:

with db.cursor as cur:
for user in cur.users.all().unbunch(3):

print(user.name)

unbunch() re-excutes the query and invalidates the cache on each call, just like many().

6.6 Getting the number of rows

If you are only interested in the number of row in a result you can pass a Query object to the len() function. quma
also includes a convenience method called count(). Some drivers (like pycopg2) support the rowcount property
of PEP249 which specifies the number of rows that the last execute produced. If it is available it will be used to
determine the number of rows, otherwise a fetchall will be executed and passed to len() to get the number.

number_of_users = len(cur.users.all())
number_of_users = cur.users.all().count()
number_of_users = db.users.all(cur).count()

Note: len() or count() calls must occure before fetch calls like one() or all(). This has to do with the
internals of the DBAPI drivers. A fetch would overwrite the value of rowcount which would return -1 afterwards.

6.7 Checking if a result exists

To check if a query has a result or not call the exists() method.

has_users = cur.users.all().exists()

You can also use the query object itself for truth value testing:

all_users = cur.users.all()
if all_users:

user1 = allusers.first()

6.8 Ad hoc queries

To run an ad hoc query you can use the query method of the cursor:

with db.cursor as cur:
sql = 'SELECT name, city FROM users WHERE email = ?;'
user = cur.query(sql, 'user.1@example.com').one()

18 Chapter 6. The Query class

quma Documentation, Release 0.1.0

6.9 Prepared statements

quma does not have a special API for prepared statements, but you can easily use them. In the following example we
use PostgreSQL’s syntax. Given a SQL script sqlscripts/users/prepare.sql with the content below . . .

PREPARE prep (varchar(128), int) AS
SELECT name, city FROM users WHERE email = $1 AND 1 = $2;

. . . you can use it as shown here:

with db.cursor as cur:
cur.users.pgsql_prepare().run()
for i in range(1, 5):

q = cur.query(f"EXECUTE prep('user.{i}@example.com', 1);")
assert q.value() == f'User {i}'

cur.query(f"DEALLOCATE PREPARE prep;").run()

6.10 Results are cached

As described above, quma executes queries lazily. Only after the first call of a method or when an iteration over the
query object is started, the data will be fetched. The fetched result will be cached in the query object. This means you
can perform more than one operation on the object while the query will not be re-executed. If you want to re-execute
it, you need to call run() manually.

with db.cursor as cur:
all_users = cur.users.all()

for user in all_users:
the result is fetched and cached on the first iteration
print(user.name)

get a list of all users from the cache
all_users.all()
get the first user from the cache
all_users.first()

re-execute the query
all_users.run()

fetch and cache the new result of the re-executed query
all_users.all()

6.11 Accessing the underlying cursor

You can access the attributes of the cursor which is used to execute the query directly on the query object.

with db.cursor as cur:
added = cur.users.add(name='User', email='user.1@example.com').run()
if added.lastrowid:

user = cur.user.by_id(id=added.lastrowid).run()
user.fetchone()

6.9. Prepared statements 19

quma Documentation, Release 0.1.0

6.12 Overview

6.12.1 Class Query

class quma.query.Query(script, cursor, args, kwargs, prepare_params)
The query object is the value you get when you run a query, i. e. call a Script object.

all()
Return a list of all results

count()
Return the length of the result.

exists()
Return if the query’s result has rows.

first()
Get exactly one row and return None if there is no row present in the result.

many()
Return a ManyResult object initialized with this query object.

one()
Get exactly one row and check if only one exists, otherwise raise an error.

run()
Execute the query using the DBAPI driver.

unbunch(size=None)
Return a generator that simplifies the use of fetchmany.

Parameters size – The number of rows to be fetched per fetchmany call. If not given use the
default value of the driver.

value(key=0)
Call one() and return the first column by default.

Parameters key – Return the value at key’s position instead of the first column.

6.12.2 Class ManyResult

class quma.query.ManyResult(query)

get(size=None)
Call the fetchmany() method of the raw cursor.

Parameters size – The number of rows to be returned. If not given use the default value of
the driver.

20 Chapter 6. The Query class

CHAPTER 7

Connecting

You connect to a server/database by creating an instance of the class quma.Database. You have to at least provide
a valid database URL and the path to your sql scripts. See below for the details.

7.1 Connection Examples

sqldirs = '/path/to/sql/scripts'

can also be a list of paths:
sqldirs = [

'/path/to/sql/scripts',
'/another/path/to/sql/scripts',

]

SQLite
db = Database('sqlite:////path/to/db.sqlite', sqldirs)
SQLite in memory db
db = Database('sqlite:///:memory:', sqldirs)

PostgreSQL localhost
db = Database('postgresql://username:password@/db_name', sqldirs)
PostgreSQL network server
db = Database('postgresql://username:password@10.0.0.1:5432/db_name', sqldirs)

MySQL/MariaDB localhost
db = Database('mysql://username:password@/db_name', sqldirs)
MySQL/MariaDB network server
db = Database('mysql://username:password@192.168.1.1:5432/db_name', sqldirs)

You can pass driver specific parameters e. g. MySQL's charset
db = Database('mysql://username:password@192.168.1.1:5432/db_name',

sqldirs,
charset='utf8')

21

quma Documentation, Release 0.1.0

7.2 The Database class

class quma.database.Database(dburi, *args, **kwargs)
The database object acts as the central object of the library.

Parameters

• dburi – The connection string. See section “Connection Examples”

• sqldirs – One or more filesystem paths pointing to the sql scripts. str or pathlib.
Path.

• persist – If True quma immediately opens a connection and keeps it open throughout
the complete application runtime. Setting it to Truewill raise an error if you try to initialize
a connection pool. Defaults to False.

• pessimistic – If True quma emits a test statement on a persistent SQL connection
every time it is accessed or at the start of each connection pool checkout (see section “Con-
nection Pool”), to test that the database connection is still viable. Defaults to False.

• contextcommit – If True and a context manager is used quma will automatically com-
mit all changes when the context manager exits. Defaults to False.

• prepare_params – A callback function which will be called before every query to pre-
pare the params which will be passed to the query. Defaults to None.

• file_ext – The file extension of sql files. Defaults to ‘sql'.

• tmpl_ext – The file extension of template files (see Templates). Defaults to 'msql'.

• echo – Print the executed query to stdout if True. Defaults to False. PostgreSQL and
MySQL/MariaDB connections will print the query after argument binding. This means
placeholders will be substituted with the parameter values. SQLite will always print the
query without substitutions.

• cache – cache the scripts in memory if True, otherwise re-read each script when the query
is executed. Defaults to False.

Additional connection pool parameters (see Connection pool):

Parameters

• size – The size of the pool to be maintained. This is the largest number of connections
that will be kept persistently in the pool. The pool begins with no connections. Defaults to
5.

• overflow – The maximum overflow size of the pool. When the number of checked-out
connections reaches the size set in size, additional connections will be returned up to this
limit. Set to -1 to indicate no overflow limit. Defaults to 10.

• timeout – The number of seconds to wait before giving up on returning a connection.
Defaults to None.

exception DoesNotExistError

exception MultipleRowsError

close()
Close (all) open connections. If you want to reconnect you need to create a new quma.Database
instance.

cursor
Open a connection and return a cursor.

22 Chapter 7. Connecting

quma Documentation, Release 0.1.0

execute(query, **kwargs)
Execute the statements in query and commit immediately.

Parameters query – The sql query to execute.

release(carrier)
If the carrier holds a connection close it or return it to the pool.

Parameters carrier – An object holding a quma connection. See Reusing connections

7.2. The Database class 23

quma Documentation, Release 0.1.0

24 Chapter 7. Connecting

CHAPTER 8

Connection pool

quma provides a connection pool implementation (PostgreSQL and MySQL only) similar to sqlalchemy’s and even
borrows code and ideas from it.

Setup a pool:

PostgreSQL pool (keeps 5 connections open and allows 10 more)
db = Database('postgresql+pool://username:password@/db_name', sqldir,

size=5, overflow=10)

MySQL/MariaDB pool
db = Database('mysql+pool://username:password@/db_name', sqldir,

size=5, overflow=10)

For a description of the parameters see Connecting.

25

https://www.sqlalchemy.org

quma Documentation, Release 0.1.0

26 Chapter 8. Connection pool

CHAPTER 9

Reusing connections

To reuse connections you can pass an object - the so-called carrier - to db when you create a cursor. quma then
remembers the carrier object’s identity and and returns the same connection which was returned the first time when
you pass the same carrier again.

A good example is the request object in web applications:

from pyramid.view import view_config
from quma import Database

db = Database('sqlite:////path/to/db.sqlite', sqldir)

def do_more(request, user_id):
reuses the same connection which was opened
in user_view.
with db(request).cursor as cur:

cur.user.remove(id=user_id)

@view_config(route_name='user')
def user_view(request):

with db(request).cursor as cur:
user = cur.user.by_name(name='Username').one()

do_more(request, user['id'])

with db(request).cursor as cur:
reuses the connection
user = cur.user.rename(id=13, name='New Username')
commit every statement previously executed
cur.commit()

either exlicitly close the cursor as last step
cur.close()

(continues on next page)

27

quma Documentation, Release 0.1.0

(continued from previous page)

or release the carrier using the database object
db.release(request)

Note: It is always a good idea to close a connection if you’re done. If you are using a carrier and a connection pool
it is absolutely necessary and you have to explicitly close the cursor or release the carrier. You can do it using cur.
close() or by passing the carrier to db.release(carrier), otherwise the connection would not be returned
to the pool.

28 Chapter 9. Reusing connections

CHAPTER 10

Changling cursor

If you are using SQLite or PostgreSQL you can access result object attributes using three different methods if you
pass changling=True on db initialization. (MySQL does not support it. See below)

db = Database('sqlite:///:memory:', sqldir, changeling=True)

with db.cursor as c:
user = db.users.by_id(c, 13).one()
name = user[0] # by index
name = user['name'] # by key
name = user.name # by attribute

10.1 Shadowed superclass members

If a query result has a field with the same name as a member of the superclass of the changeling (sqlite: sqlite3.
Row, psycopg2: psycopg2.extras.DictRow) it shadows the original member. This means the original member
isn’t accessible. You can access it anyway if you prefix it with an underscore ‘_’.

The sqlite3.Row, for example, has a method keys() which lists all field names. If a query returns a field with
the name ‘keys’ the method is shadowed:

-- /path/to/sql/scripts/users/by_id.sql
SELECT name, email, 'the keys' AS keys FROM users WHERE id = :id;

row = cur.users.by_id(13).one()
assert row.keys == 'the keys'

If you want to call the keys method of row prefix it with _
print(row._keys()) # ['name', 'email', 'keys']

29

quma Documentation, Release 0.1.0

10.2 Performance

By default, changling is False which is slightly faster. Then SQLite supports access by index only. PostgreSQL by
key and index (we use psycopg.extras.DictCursor internally).

10.3 MySQL/MariaDB

MySQL/MariaDB supports access by index only, except you pass dict_cursor=True on initialization. Then it
supports access by key only.

30 Chapter 10. Changling cursor

CHAPTER 11

Passing Parameters to SQL Queries

SQLite supports two kinds of placeholders: question marks (qmark style) and named placeholders (named style).
PostgreSQL/MySQL/MariaDB support simple (%s) and named (%(name)s) pyformat placeholders:

-- SQLite qmark
SELECT name, email FROM users WHERE id = ?
-- named
SELECT name, email FROM users WHERE id = :id

-- PostgreSQL/MySQL/MariaDB pyformat
SELECT name, email FROM users WHERE id = %s
-- named
SELECT name, email FROM users WHERE id = %(id)s

simple style (? or %s)
cur.users.by_id(1)
db.users.by_id(cur, 1)

named style (:name or %(name)s)
cur.users.by_id(id=1)
db.users.by_id(cur, id=1)

31

quma Documentation, Release 0.1.0

32 Chapter 11. Passing Parameters to SQL Queries

CHAPTER 12

Dynamic SQL using Templates

quma supports rendering templates using the Mako template library. By default, template files must have the file
extension *.msql, which can be changed.

Using this feature you are able to write dynamic queries which would not be possible with SQL alone.

A very simple example:

-- sql/users/by_group.msql
SELECT

name,
% if admin:

birthday,
% endif

city
FROM users
% if not admin:
WHERE

group = 'public'
% endif

In Python you call it the same way like any other SQL query:

cur.users.by_group(admin=True)

12.1 Beware of SQL injections!

Never use templates to do a form of string concatenation as this would open the door to SQL injections. So never write
queries like so:

You should always use the parameter substitution mechanism of the underlying driver and restrict Mako features to
control structures:

33

http://www.makotemplates.org

quma Documentation, Release 0.1.0

SELECT * FROM
% if table_name == 'admins':

admins
% else:

users
% endif
WHERE

is_active = %(is_active)s;

See:

• https://en.wikipedia.org/wiki/SQL_injection

• https://xkcd.com/327/ (You’ve seen this far too often? https://xkcd.com/1053/)

12.2 The problem with the %

The Mako template engine uses the %-sign to indicate control structures like if and for. Unfortunately psycopg2
as well as mysqlclient use %s for query placeholders and the %(variable)s syntax for named placeholders. Mako
does not allow the %-sign to be the first non whitespace character in a line. As per documentation Mako should allow
to escape % using %%, but it seems it does not work. So you should simply avoid it in template scripts.

Wrong:

SELECT * FROM
users

WHERE
%(is_active)s = is_active;

Correct:

SELECT * FROM
users

WHERE
is_active = %(is_active)s;

See:

• https://docs.makotemplates.org/en/latest/syntax.html#control-structures

• https://github.com/sqlalchemy/mako/issues/323

12.3 Template files lookup

The resolution of included or imported template files is accomplished by mako’s class TemplateLookup, which
you can learn more about in the mako docs: Using TemplateLookup

It is initialized with the the same sql directories which are used on Database initialization.

34 Chapter 12. Dynamic SQL using Templates

https://en.wikipedia.org/wiki/SQL_injection
https://xkcd.com/327/
https://xkcd.com/1053/
https://docs.makotemplates.org/en/latest/syntax.html#control-structures
https://github.com/sqlalchemy/mako/issues/323
https://docs.makotemplates.org/en/latest/usage.html#using-templatelookup

CHAPTER 13

Shadowing

If you pass a list of two or more directories to the Database constructor, the order is important. Files from subsequent
directories in the list with the same relative path will shadow (or overwrite) files from preceding directories.

Let’s say you have two different directories with SQL scripts you like to use with quma. For example directory first:

/path/to/sql/scripts/first
addresses

all.sql
remove.sql

users
all.sql
remove.sql

get_admin.sql
remove_admin.sql

and directory second:

/path/to/sql/scripts/second
users

all.sql
rename.sql

create_admin.sql
get_admin.sql

When you initialize quma with both directories like this:

from quma import Database

db = Database('sqlite:///:memory:', [
'/path/to/sql/scripts/first',
'/path/to/sql/scripts/second',

])

quma creates the following members:

35

quma Documentation, Release 0.1.0

From directory:
cur.addresses.all # first
cur.addresses.remove # first
cur.users.all # second (shadows all.sql from dir first)
cur.users.remove # first
cur.users.rename # second
cur.create_admin # second
cur.get_admin # second (shadows get_admin.sql from dir first)
cur.remove_admin # first

36 Chapter 13. Shadowing

CHAPTER 14

Custom namespaces

quma automatically creates namespace objects when it reads in your sql scripts. Each subfolder in the script directory
will result in a namespace object as a direct member of db or cur.

You can add custom methods to these objects by putting a __init__.py file into the subfolder which is your
namespace and by adding a subclass of quma.Namespace to it. The class must have the same name as the folder
with the first letter uppercase.

path/to/sql/scripts
users

__init__.py
all.sql
by_city.sql

..

from quma import Namespace

If the subfolder's name is 'users' the
class must be named 'Users'.
class Users(Namespace):

the method must accept the cursor as its first parameter
def get_test(self, cur):

return 'Test'

def get_address(self, cur, username):
user = cur.users.by_username(username=username)
return cur.address.by_user(user.id)

Public methods of the namespace must be definied with the cursor as second parameter. It will automatically be passed
when you use the cur api.

Now you can call the method the same way as you would call scripts:

db.users.get_test(cur)
cur.users.get_test() # no need to pass cur
address = cur.users.get_address('username')

37

quma Documentation, Release 0.1.0

14.1 Root members

If you want to add root level methods you need to add __init__.py to the root of your script directory and name
the subclass Root.

path/to/sql/scripts
__init__.py
users

all.sql
..

class Root(Namespace):
def root_method(self, cursor):

return 'Test'

db.root_method()
cur.root_method()

14.2 Aliasing

If you add the class level attribute alias to your custom namespace, you can call it by that name too.

from quma import Namespace

class Users(Namespace):
alias = 'user'

cur.user.all()
This is the same as.
cur.users.all()

38 Chapter 14. Custom namespaces

CHAPTER 15

Importable database

Sometimes it isn’t enough to create a global Database instance and import it into other modules. For example, if you
read the database credentials from a configuration file at runtime and then initialize the instance while the uninitialized
global is already imported elsewhere. The following code shows a way to keep the quma API in place and allows to
import the db wrapper class even if the connection is not established yet.

my_db_module.py

import quma

_db = None

class MetaDB(type):
def __getattr__(cls, attr):

return getattr(_db, attr)

class db(object, metaclass=MetaDB):
def __init__(self, carrier=None, autocommit=None):

self.carrier = carrier
self.autocommit = autocommit

def __getattr__(self, attr):
return getattr(_db(carrier=self.carrier,

autocommit=self.autocommit), attr)

def connect(uri):
global _db
sqldir = '/path/to/sql/scripts'

_db = quma.Database(uri, sqldir)

Create the instance in your main module:

main.py

(continues on next page)

39

quma Documentation, Release 0.1.0

(continued from previous page)

import my_db_module

my_db_module.connect('sqlite:///:memory:')

Now you can import the class my_db_module.db from everywhere and use it the same way as a usual instance of
quma.Database.

e. g. model.py

from my_db_module import db

with db.cursor as cur:
cur.users.all()

40 Chapter 15. Importable database

CHAPTER 16

Testing

16.1 Prerequisites

In order to run the tests for MySQL or PostgreSQL you need to create a test database:

PostgreSQL:

CREATE USER quma_test_user WITH PASSWORD 'quma_test_password';
CREATE DATABASE quma_test_db;
GRANT ALL PRIVILEGES ON DATABASE quma_test_db to quma_test_user;

MySQL/MariaDB:

CREATE DATABASE quma_test_db CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;
CREATE USER quma_test_user@localhost IDENTIFIED BY 'quma_test_password';
GRANT ALL ON quma_test_db.* TO quma_test_user@localhost;

16.2 How to run the tests

Run pytest or py.test to run all tests. pytest -m "not postgres and not mysql" for all general
tests. And pytest -m "postgres" or pytest -m "mysql" for DBMS specific tests.

16.3 Overwrite credentials

If you like to use your own test database and user you can overwrite the default credentials by setting environment
variables

PostgreSQL:

• QUMA_PGSQL_USER

41

quma Documentation, Release 0.1.0

• QUMA_PGSQL_PASS

• QUMA_PGSQL_DB

MySQL/MariaDB:

• QUMA_MYSQL_USER

• QUMA_MYSQL_PASS

• QUMA_MYSQL_DB

42 Chapter 16. Testing

Index

A
all() (quma.query.Query method), 20

C
close() (quma.database.Database method), 22
count() (quma.query.Query method), 20
cursor (quma.database.Database attribute), 22

D
Database (class in quma.database), 22
Database.DoesNotExistError, 22
Database.MultipleRowsError, 22

E
execute() (quma.database.Database method), 22
exists() (quma.query.Query method), 20

F
first() (quma.query.Query method), 20

G
get() (quma.query.ManyResult method), 20

M
many() (quma.query.Query method), 20
ManyResult (class in quma.query), 20

O
one() (quma.query.Query method), 20

Q
Query (class in quma.query), 20

R
release() (quma.database.Database method), 23
run() (quma.query.Query method), 20

U
unbunch() (quma.query.Query method), 20

V
value() (quma.query.Query method), 20

43

	Motivation
	Learn more
	License
	Installation
	Prerequisites
	Installing quma
	Templates for dynamic SQL
	Development

	How to use quma
	Opening a connection
	Creating a cursor
	Running queries
	Committing changes and rollback
	Executing literal statements
	Accessing the DBAPI cursor and connection

	The Query class
	Getting multiple rows from a query
	Getting a single row
	Execute only
	Getting data in chunks
	A simpler version of many()
	Getting the number of rows
	Checking if a result exists
	Ad hoc queries
	Prepared statements
	Results are cached
	Accessing the underlying cursor
	Overview

	Connecting
	Connection Examples
	The Database class

	Connection pool
	Reusing connections
	Changling cursor
	Shadowed superclass members
	Performance
	MySQL/MariaDB

	Passing Parameters to SQL Queries
	Dynamic SQL using Templates
	Beware of SQL injections!
	The problem with the %
	Template files lookup

	Shadowing
	Custom namespaces
	Root members
	Aliasing

	Importable database
	Testing
	Prerequisites
	How to run the tests
	Overwrite credentials

	Index

